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“Executive”	Summary	

Weakly	Randomized	Encryption	
– A	safer	upgrade	to	deterministic	encryption	
– Secure	against	most	common	“snapshot”	attacks	
– Easy	to	deploy	
– ACID	properties*	
– Low	overhead	
	



Research	Questions	

1.  What	security	can	we	achieve	if	
easy	deployability	is	a	hard	constraint?	

2.  Are	there	PPE-like	constructions	that	provide	
any	meaningful	security	against	inference???	



RELATED	WORK	



Property-Preserving	Encryption	(PPE)	

•  Deterministic	and	Efficiently	Searchable	
Encryption	[BBO07,ABO07]	

	
•  CryptDB	[PRZB11]	

•  Microsoft	SQL	Server	“Always	Encrypted”	



Parallel	Invention	

•  [LP18]	Lacharité	and	Paterson.		Frequency	
Smoothing	Encryption:	Preventing	snapshot	
attacks	on	deterministically	encrypted	data.	
– https://eprint.iacr.org/2017/1068	

– Most	similar	to	our	Proportional	Salt	Allocation	



Inference	Attacks	
1.  Offline	inference	(the	“snapshot”	model)	
–  IKK12,	NKW15	
–  CGPR15,	GSBNR17	

2.  Online	inference	
–  KKNO16,	LMP18	
– GLMP18,	GLMP19	

3.  Inference	from	
database/OS	artifacts	
– GRS17	



Defense	Against	Inference	Attacks	
1.  Offline	inference:	
–  IKK12,	NKW15	
–  CGPR15,	GSBNR17	

2.  Online	inference	
–  KKNO16,	LMP18	
– GLMP18,	GLMP19	

3.  Inference	from	
database/OS	artifacts	
– GRS17	

Focus	of	this	work	
-  Defend	against	the	most	common	attacks	

(i.e.	snapshots	/	SQL	injection)	
-  Maximize	backwards	compatibility	
-  What	security	&	performance	can	we	get?	

Harder	problem	/	Future	work	
-	Attacks	apply	to	stronger	constructions	too	

Mostly	engineering??	
-  Not	worth	trying	to	fix	this	

if	you	can’t	also	defend	#1	



SECURITY	GOALS	



Security	Game	

D0	=	(m0,0,	m0,1,	…m0,n)	
D1	=	(m1,0,	m1,1,	…m1,n)	

b	={0,1}1	

EDB	=	Enc(Shuffle(Db))	

b’	

Adversary	wins	iff	b’	==	b	



Statistical	Distance	and	Security	



CONSTRUCTIONS	



Efficiently	Searchable	Encryption	
[BBO07,	ABO07]	

Row	ID	 Animal	

1	 Dog	

2	 Horse	

3	 Cat	

4	 Cat	

5	 Dog	

6	 Horse	

7	 Dog	

8	 Dog	

9	 Cat	

Plain	Table	



Efficiently	Searchable	Encryption	
[BBO07,	ABO07]	

Row	ID	 Animal	

1	 Dog	

2	 Horse	

3	 Cat	

4	 Cat	

5	 Dog	

6	 Horse	

7	 Dog	

8	 Dog	

9	 Cat	

Plain	Table	
Row	ID	 Tag	 Cipher	

1	 F(Dog)	 E(Dog)	

2	 F(Horse)	 E(Horse)	

3	 F(Cat)	 E(Cat)	

4	 F(Cat)	 E(Cat)	

5	 F(Dog)	 E(Dog)	

6	 F(Horse)	 E(Horse)	

7	 F(Dog)	 E(Dog)	

8	 F(Dog)	 E(Dog)	

9	 F(Cat)	 E(Cat)	

Encrypted	Table	



Efficiently	Searchable	Encryption	
[BBO07,	ABO07]	

Row	ID	 Animal	

1	 Dog	

2	 Horse	

3	 Cat	

4	 Cat	

5	 Dog	

6	 Horse	

7	 Dog	

8	 Dog	

9	 Cat	

Plain	Table	
Row	ID	 Tag	 Cipher	

1	 eb3f	 653c	

2	 137a	 bb21	

3	 6f20	 e0f3	

4	 6f20	 9201	

5	 eb3f	 bbcf	

6	 137a	 d830	

7	 eb3f	 c971	

8	 eb3f	 ee26	

9	 6f20	 7a0b	

Encrypted	Table	





Randomizing	Deterministic	
Encryption	

•  Too	random	à	Not	useful	L	

	

•  Too	predictable	à	Not	secure	L	

•  Just	enough	randomness	à	J	



To	Encrypt	

1. Choose	random,	low	entropy	salt	s	

2. Tag	t	=	Fk1(s	||	m)	

3. (Randomized)	ciphertext	c	=	Ek2(m)	
	



To	Search	

1.  Generate	all	possible	tags	for	msg	m	
– For	each	salt	si:	

	Let	ti	=	Fk1(si	||	m)	

2.  Encrypt	query	
– SELECT	…		
FROM	enc_table	
WHERE	tag	in	(t1,	t2,	…,	tn);	



Strawman	Construction:	Fixed	Salts	
•  Choose	salt	uniformly	from	[1..N]	
–  e.g.	N	=	3	



Proportional	Salt	Allocation	

•  Allocate	salts	in	proportion	to	frequency	

Frequencies	are	
closer	to	Uniform	
	
	
	
Some	aliasing	effects	



Poisson	Salt	Allocation	

0	 Pr[m]	

Question:		
How	to	allocate	message	m’s	probability	mass	to	the	ciphertexts?	



Poisson	Salt	Allocation	

0	 Pr[m]	

Idea:		
Sample	points	from	a	Poisson	process	w	rate	param	λ	
	

a1	 a2	 a3	 a4	



Poisson	Salt	Allocation	

0	 Pr[m]	

Idea:		
Sample	points	from	a	Poisson	process	w	rate	param	λ	
Distances	between	points	(“inter-arrivals”)	give	tag	frequencies	

Pr[t1]	

Pr[t2]	

Pr[t3]	

Pr[t4]	

Pr[t5]	



Poisson	Security	

•  Ciphertext	freqs	are	identically	distributed!	
– Pr[tj]	~	Exponential(λ)	for	all	j	
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Poisson	Security	

•  Ciphertext	freqs	are	identically	distributed!	
– Pr[tj]	~	Exponential(λ)	for	all	j	

•  Identical	distribution	à	No	statistical	distance	

•  No	statistical	distance	à	No	guessing	advantage	
	

Whoops…		Not	quite	true..	
	
They	are	almost	identically	
distributed.			:-\	

	
	



Something	Fishy	About	Poisson	

0	 Pr[m]	

Problem:		
What	if	there	are	no	arrivals	in	the	interval	[0,	Pr[m]]	???	
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What	if	there	are	no	arrivals	in	the	interval	[0,	Pr[m]]	???	
No	choice	but	to	give	all	of	m’s	probability	mass	to	a	single	tag	

Pr[t1]	=	Pr[m]	



Something	Fishy	About	Poisson	

0	 Pr[m]	

Problem:		
What	if	there	are	no	arrivals	in	the	interval	[0,	Pr[m]]	???	
No	choice	but	to	give	all	of	m’s	probability	mass	to	a	single	tag	
Not	really	a	true	Exponential.		Can	the	Adv	now	distinguish?	

Pr[t1]	=	Pr[m]	



Poisson:	Security	

2x	Statistical	
Distance	

Note:	We	can	make	the	
SD	arbitrarily	small	by	
increasing	rate	param	λ	



Poisson:	One	More	Problem	

•  Lacharite-Paterson	attack:	What	if	Adv	looks	
at	more	than	one	ciphertext?	
– Goal:	Find	a	set	of	search	tags	t1,	t2,	…,	tn	s.t.	

•  Pr[m]	=	Σj	Pr[tj]	
•  These	records	are	probably	(???)	the	encryptions	of	m	

– Difficulty:	Bin	packing	problem		:-\	
•  On	the	bright	side:	

– Might	be	a	hard	(NP)	instance	
–  Solution	might	(tend	to)	select	the	wrong	records	



Bucketized	Poisson	

0	

Pr[m1]	 +Pr[m2]	 +Pr[m3]	

1	

Lay	out	plaintext	freqs	on	the	number	line	[0..1]	



Bucketized	Poisson	
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Pr[m1]	 +Pr[m2]	 +Pr[m3]	

1	

Lay	out	plaintext	freqs	on	the	number	line	[0..1]	
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Bucketized	Poisson	
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Bucketized	Poisson	

0	

Pr[t1]	

Pr[t2]	

Pr[t3]	

1	

Lay	out	plaintext	freqs	on	the	number	line	[0..1]	
Sample	from	the	Poisson	process	
Use	inter-arrivals	to	fix	a	set	of	search	tags	for	all	plaintexts	to	share	

Pr[t4]	 Pr[t6]	

Pr[t5]	
Pro:	Tag	frequencies	are	independent	of	
plaintext	freqs	

	
Con:	Tags	are	now	buckets	representing	
multiple	plaintexts	



EMPIRICAL	EVALUATION	



Experimental	Procedure	

•  Used	SPARTA	testing	framework	from	MIT-LL	
– Generated	synthetic	databases	

•  1M,	10M	records	
– Generated	synthetic	queries	

•  SELECT	…	FROM	table	WHERE	column	=	value;	
•  Return	up	to	10k	matching	records	

•  Ran	queries	on	real	SQL	databases	
– Google	Compute	Engine	
–  Local	Postgres	server	



Performance:	Cold	Cache	



Performance:	Warm	Cache	



Conclusion	

•  WRE	Contributions	
– Easy	to	deploy	
– Secure	against	most	common	threats	
– Performance	close	to	plaintext	

•  Future	Work	/	Open	Problems	
– Security	for	queries?		For	access	pattern?	
– Security	for	multiple	(correlated)	columns?	
– Range	queries?	


