
Weakly	Randomized	Encryption	
And	the	Strength	of	Weak	Randomization	

David	Pouliot,	Scott	Griffy,	Charles	V.	Wright	
Portland	State	University	

	
This	work	to	appear	in	DSN	2019	

This	material	is	based	upon	work	supported	by	the	Defense	Advanced	Research	Projects	Agency	(DARPA)	and	Space	
and	Naval	Warfare	Systems	Center,	Pacific	(SSC	Pacific)	under	Contract	No.	N66001-15-C-4070.	Any	opinions,	findings	
and	conclusions	or	recommendations	expressed	in	this	material	are	those	of	the	author(s)	and	do	not	necessarily	
reflect	the	views	of	DARPA	or	SSC	Pacific.		
	

“Executive”	Summary	

Weakly	Randomized	Encryption	
– A	safer	upgrade	to	deterministic	encryption	
– Secure	against	most	common	“snapshot”	attacks	
– Easy	to	deploy	
– ACID	properties*	
– Low	overhead	
	

Research	Questions	

1.  What	security	can	we	achieve	if	
easy	deployability	is	a	hard	constraint?	

2.  Are	there	PPE-like	constructions	that	provide	
any	meaningful	security	against	inference???	

RELATED	WORK	

Property-Preserving	Encryption	(PPE)	

•  Deterministic	and	Efficiently	Searchable	
Encryption	[BBO07,ABO07]	

	
•  CryptDB	[PRZB11]	

•  Microsoft	SQL	Server	“Always	Encrypted”	

Parallel	Invention	

•  [LP18]	Lacharité	and	Paterson.		Frequency	
Smoothing	Encryption:	Preventing	snapshot	
attacks	on	deterministically	encrypted	data.	
– https://eprint.iacr.org/2017/1068	

– Most	similar	to	our	Proportional	Salt	Allocation	

Inference	Attacks	
1.  Offline	inference	(the	“snapshot”	model)	
–  IKK12,	NKW15	
–  CGPR15,	GSBNR17	

2.  Online	inference	
–  KKNO16,	LMP18	
– GLMP18,	GLMP19	

3.  Inference	from	
database/OS	artifacts	
– GRS17	

Defense	Against	Inference	Attacks	
1.  Offline	inference:	
–  IKK12,	NKW15	
–  CGPR15,	GSBNR17	

2.  Online	inference	
–  KKNO16,	LMP18	
– GLMP18,	GLMP19	

3.  Inference	from	
database/OS	artifacts	
– GRS17	

Focus	of	this	work	
-  Defend	against	the	most	common	attacks	

(i.e.	snapshots	/	SQL	injection)	
-  Maximize	backwards	compatibility	
-  What	security	&	performance	can	we	get?	

Harder	problem	/	Future	work	
-	Attacks	apply	to	stronger	constructions	too	

Mostly	engineering??	
-  Not	worth	trying	to	fix	this	

if	you	can’t	also	defend	#1	

SECURITY	GOALS	

Security	Game	

D0	=	(m0,0,	m0,1,	…m0,n)	
D1	=	(m1,0,	m1,1,	…m1,n)	

b	={0,1}1	

EDB	=	Enc(Shuffle(Db))	

b’	

Adversary	wins	iff	b’	==	b	

Statistical	Distance	and	Security	

CONSTRUCTIONS	

Efficiently	Searchable	Encryption	
[BBO07,	ABO07]	

Row	ID	 Animal	

1	 Dog	

2	 Horse	

3	 Cat	

4	 Cat	

5	 Dog	

6	 Horse	

7	 Dog	

8	 Dog	

9	 Cat	

Plain	Table	

Efficiently	Searchable	Encryption	
[BBO07,	ABO07]	

Row	ID	 Animal	

1	 Dog	

2	 Horse	

3	 Cat	

4	 Cat	

5	 Dog	

6	 Horse	

7	 Dog	

8	 Dog	

9	 Cat	

Plain	Table	
Row	ID	 Tag	 Cipher	

1	 F(Dog)	 E(Dog)	

2	 F(Horse)	 E(Horse)	

3	 F(Cat)	 E(Cat)	

4	 F(Cat)	 E(Cat)	

5	 F(Dog)	 E(Dog)	

6	 F(Horse)	 E(Horse)	

7	 F(Dog)	 E(Dog)	

8	 F(Dog)	 E(Dog)	

9	 F(Cat)	 E(Cat)	

Encrypted	Table	

Efficiently	Searchable	Encryption	
[BBO07,	ABO07]	

Row	ID	 Animal	

1	 Dog	

2	 Horse	

3	 Cat	

4	 Cat	

5	 Dog	

6	 Horse	

7	 Dog	

8	 Dog	

9	 Cat	

Plain	Table	
Row	ID	 Tag	 Cipher	

1	 eb3f	 653c	

2	 137a	 bb21	

3	 6f20	 e0f3	

4	 6f20	 9201	

5	 eb3f	 bbcf	

6	 137a	 d830	

7	 eb3f	 c971	

8	 eb3f	 ee26	

9	 6f20	 7a0b	

Encrypted	Table	

Randomizing	Deterministic	
Encryption	

•  Too	random	à	Not	useful	L	

	

•  Too	predictable	à	Not	secure	L	

•  Just	enough	randomness	à	J	

To	Encrypt	

1. Choose	random,	low	entropy	salt	s	

2. Tag	t	=	Fk1(s	||	m)	

3. (Randomized)	ciphertext	c	=	Ek2(m)	
	

To	Search	

1.  Generate	all	possible	tags	for	msg	m	
– For	each	salt	si:	

	Let	ti	=	Fk1(si	||	m)	

2.  Encrypt	query	
– SELECT	…		
FROM	enc_table	
WHERE	tag	in	(t1,	t2,	…,	tn);	

Strawman	Construction:	Fixed	Salts	
•  Choose	salt	uniformly	from	[1..N]	
–  e.g.	N	=	3	

Proportional	Salt	Allocation	

•  Allocate	salts	in	proportion	to	frequency	

Frequencies	are	
closer	to	Uniform	
	
	
	
Some	aliasing	effects	

Poisson	Salt	Allocation	

0	 Pr[m]	

Question:		
How	to	allocate	message	m’s	probability	mass	to	the	ciphertexts?	

Poisson	Salt	Allocation	

0	 Pr[m]	

Idea:		
Sample	points	from	a	Poisson	process	w	rate	param	λ	
	

a1	 a2	 a3	 a4	

Poisson	Salt	Allocation	

0	 Pr[m]	

Idea:		
Sample	points	from	a	Poisson	process	w	rate	param	λ	
Distances	between	points	(“inter-arrivals”)	give	tag	frequencies	

Pr[t1]	

Pr[t2]	

Pr[t3]	

Pr[t4]	

Pr[t5]	

Poisson	Security	

•  Ciphertext	freqs	are	identically	distributed!	
– Pr[tj]	~	Exponential(λ)	for	all	j	

Poisson	Security	

•  Ciphertext	freqs	are	identically	distributed!	
– Pr[tj]	~	Exponential(λ)	for	all	j	

•  Identical	distribution	à	No	statistical	distance	

	

Poisson	Security	

•  Ciphertext	freqs	are	identically	distributed!	
– Pr[tj]	~	Exponential(λ)	for	all	j	

•  Identical	distribution	à	No	statistical	distance	

•  No	statistical	distance	à	No	guessing	advantage	
	

Poisson	Security	

•  Ciphertext	freqs	are	identically	distributed!	
– Pr[tj]	~	Exponential(λ)	for	all	j	

•  Identical	distribution	à	No	statistical	distance	

•  No	statistical	distance	à	No	guessing	advantage	
	

Whoops…		Not	quite	true..	
	
They	are	almost	identically	
distributed.			:-\	

	
	

Something	Fishy	About	Poisson	

0	 Pr[m]	

Problem:		
What	if	there	are	no	arrivals	in	the	interval	[0,	Pr[m]]	???	

Something	Fishy	About	Poisson	

0	 Pr[m]	

Problem:		
What	if	there	are	no	arrivals	in	the	interval	[0,	Pr[m]]	???	
No	choice	but	to	give	all	of	m’s	probability	mass	to	a	single	tag	

Pr[t1]	=	Pr[m]	

Something	Fishy	About	Poisson	

0	 Pr[m]	

Problem:		
What	if	there	are	no	arrivals	in	the	interval	[0,	Pr[m]]	???	
No	choice	but	to	give	all	of	m’s	probability	mass	to	a	single	tag	
Not	really	a	true	Exponential.		Can	the	Adv	now	distinguish?	

Pr[t1]	=	Pr[m]	

Poisson:	Security	

2x	Statistical	
Distance	

Note:	We	can	make	the	
SD	arbitrarily	small	by	
increasing	rate	param	λ	

Poisson:	One	More	Problem	

•  Lacharite-Paterson	attack:	What	if	Adv	looks	
at	more	than	one	ciphertext?	
– Goal:	Find	a	set	of	search	tags	t1,	t2,	…,	tn	s.t.	

•  Pr[m]	=	Σj	Pr[tj]	
•  These	records	are	probably	(???)	the	encryptions	of	m	

– Difficulty:	Bin	packing	problem		:-\	
•  On	the	bright	side:	

– Might	be	a	hard	(NP)	instance	
–  Solution	might	(tend	to)	select	the	wrong	records	

Bucketized	Poisson	

0	

Pr[m1]	 +Pr[m2]	 +Pr[m3]	

1	

Lay	out	plaintext	freqs	on	the	number	line	[0..1]	

Bucketized	Poisson	

0	

Pr[m1]	 +Pr[m2]	 +Pr[m3]	

1	

Lay	out	plaintext	freqs	on	the	number	line	[0..1]	
Sample	from	the	Poisson	process	

Bucketized	Poisson	

0	

Pr[t1]	

Pr[t2]	

Pr[t3]	

1	

Lay	out	plaintext	freqs	on	the	number	line	[0..1]	
Sample	from	the	Poisson	process	
Use	inter-arrivals	to	fix	a	set	of	search	tags	for	all	plaintexts	to	share	

Pr[t4]	 Pr[t6]	

Pr[t5]	

Bucketized	Poisson	

0	

Pr[t1]	

Pr[t2]	

Pr[t3]	

1	

Lay	out	plaintext	freqs	on	the	number	line	[0..1]	
Sample	from	the	Poisson	process	
Use	inter-arrivals	to	fix	a	set	of	search	tags	for	all	plaintexts	to	share	

Pr[t4]	 Pr[t6]	

Pr[t5]	
Pro:	Tag	frequencies	are	independent	of	
plaintext	freqs	

	
Con:	Tags	are	now	buckets	representing	
multiple	plaintexts	

EMPIRICAL	EVALUATION	

Experimental	Procedure	

•  Used	SPARTA	testing	framework	from	MIT-LL	
– Generated	synthetic	databases	

•  1M,	10M	records	
– Generated	synthetic	queries	

•  SELECT	…	FROM	table	WHERE	column	=	value;	
•  Return	up	to	10k	matching	records	

•  Ran	queries	on	real	SQL	databases	
– Google	Compute	Engine	
–  Local	Postgres	server	

Performance:	Cold	Cache	

Performance:	Warm	Cache	

Conclusion	

•  WRE	Contributions	
– Easy	to	deploy	
– Secure	against	most	common	threats	
– Performance	close	to	plaintext	

•  Future	Work	/	Open	Problems	
– Security	for	queries?		For	access	pattern?	
– Security	for	multiple	(correlated)	columns?	
– Range	queries?	

